Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback
The aim of this study was to investigate the autoregulation of renal blood flow under physiological conditions, when challenged by the normal pressure fluctuations, and the contribution of the tubuloglomerular feedback (TGF). The transfer function between 0.0018 and 0.5 Hz was calculated from the sp...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1998-01, Vol.506 (1), p.275-290 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to investigate the autoregulation of renal blood flow under physiological conditions, when challenged
by the normal pressure fluctuations, and the contribution of the tubuloglomerular feedback (TGF).
The transfer function between 0.0018 and 0.5 Hz was calculated from the spontaneous fluctuations in renal arterial blood pressure
(RABP) and renal blood flow (RBF) in conscious resting dogs. The response of RBF to stepwise artificially induced reductions
in RABP was also studied (stepwise autoregulation).
Under control conditions ( n = 12 dogs), the gain of the transfer function started to decrease, indicating improving autoregulation, below 0.06-0.15 Hz
( t = 7-17 s). At 0.027 Hz a prominent peak of high gain was found. Below 0.01 Hz ( t > 100 s), the gain reached a minimum (maximal autoregulation) of -6.3 ± 0.6 dB. The stepwise autoregulation ( n = 4) was much stronger (-19.5 dB). The time delay of the transfer function was remarkably constant from 0.03 to 0.08 Hz (high
frequency (HF) range) at 1.7 s and from 0.0034 to 0.01 Hz (low frequency (LF) range) at 14.3 s, respectively.
Nifedipine, infused into the renal artery, abolished the stepwise autoregulation (-2.0 ± 1.1 dB, n = 3). The gain of the transfer function ( n = 4) remained high down to 0.0034 Hz; in the LF range it was higher than in the control (0.3 ± 1.0 dB, P < 0.05). The time delay in the HF range was reduced to 0.5 s ( P < 0.05).
After ganglionic blockade ( n = 7) no major changes in the transfer function were observed.
Under furosemide (frusemide) (40 mg + 10 mg h â1 or 300 mg + 300 mg h â1 i.v.) the stepwise autoregulation was impaired to -7.8 ± 0.3 or -6.7 ± 1.9 dB, respectively ( n = 4). In the transfer function ( n = 7 or n = 4) the peak at 0.027 Hz was abolished. The delay in the LF range was reduced to -1.1 or -1.6 s, respectively. The transfer
gain in the LF range (-5.5 ± 1.2 or -3.8 ± 0.8 dB, respectively) did not differ from the control but was smaller than that
under nifedipine ( P < 0.05).
It is concluded that the ample capacity for regulation of RBF is only partially employed under physiological conditions. The
abolition by nifedipine and the negligible effect of ganglionic blockade show that above 0.0034 Hz it is almost exclusively
due to autoregulation by the kidney itself. TGF contributes to the maximum autoregulatory capacity, but it is not required
for the level of autoregulation expended under physiological conditions. Around 0.027 Hz, TGF |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1111/j.1469-7793.1998.275bx.x |