Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity

It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2007-04, Vol.14 (4), p.277-286
Hauptverfasser: Evans, Scott, Lickey, Marvin E, Pham, Tony A, Fischer, Quentin S, Graves, Aundrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the plasticity of young adults appears diminished in comparison with juveniles. Therefore, we asked whether the newly discovered adult ODP broadly reflects plasticity of visual cortical function and whether it persists into full maturity. Single-unit activity is the standard physiological marker of visual cortical function. Using a more optimized protocol for recording single-units, we find evidence of adult ODP of single-units and show that it is most pronounced in deep cortical layers. Furthermore, using visual evoked potentials (VEP), we find that ODP is equally robust in young adults and mature adults and is observable after just one day of monocular deprivation. Finally, we find that monocular deprivation in adults changes spatial frequency thresholds of the VEP, decreasing the acuity of the deprived pathway and improving the acuity of the non-deprived pathway. Thus, in mice, the primary visual cortex is capable of remarkable adaptation throughout life.
ISSN:1072-0502
1549-5485
DOI:10.1101/lm.392107