Protection against respiratory syncytial virus infection by DNA immunization
Respiratory syncytial virus (RSV) remains a major cause of morbidity and mortality in infants and the elderly and is a continuing challenge for vaccine development. A murine T helper cell (Th) type 2 response associates with enhanced lung pathology, which has been observed in past infant trials usin...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 1998-08, Vol.188 (4), p.681-688 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Respiratory syncytial virus (RSV) remains a major cause of morbidity and mortality in infants and the elderly and is a continuing challenge for vaccine development. A murine T helper cell (Th) type 2 response associates with enhanced lung pathology, which has been observed in past infant trials using formalin-inactivated RSV vaccine. In this study, we have engineered an optimized plasmid DNA vector expressing the RSV fusion (F) protein (DNA-F). DNA-F was as effective as live RSV in mice at inducing neutralizing antibody and cytotoxic T lymphocyte responses, protection against infection, and high mRNA expression of lung interferon gamma after viral challenge. Furthermore, a DNA-F boost could switch a preestablished anti-RSV Th2 response towards a Th1 response. Critical elements for the optimization of the plasmid constructs included expression of a secretory form of the F protein and the presence of the rabbit beta-globin intron II sequence upstream of the F-encoding sequence. In addition, anti-F systemic immune response profile could be modulated by the route of DNA-F delivery: intramuscular immunization resulted in balanced responses, whereas intradermal immunization resulted in a Th2 type of response. Thus, DNA-F immunization may provide a novel and promising RSV vaccination strategy. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.188.4.681 |