Positive selection of B cells expressing low densities of self-reactive BCRs

B cell tolerance or autoimmunity is determined by selective events. Negative selection of self-reactive B cells is well documented and proven. In contrast, positive selection of conventional B cells is yet to be firmly established. Here, we demonstrate that developing self-reactive B cells are not a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2004-03, Vol.199 (6), p.843-853
Hauptverfasser: Gaudin, Emmanuelle, Hao, Yi, Rosado, Maria Manuela, Chaby, Richard, Girard, Robert, Freitas, António A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B cell tolerance or autoimmunity is determined by selective events. Negative selection of self-reactive B cells is well documented and proven. In contrast, positive selection of conventional B cells is yet to be firmly established. Here, we demonstrate that developing self-reactive B cells are not always highly sensitive to the deletion mechanisms imposed by membrane-bound self-antigens. At low amounts, membrane-bound antigens allow survival of B cells bearing a single high affinity self-reactive B cell receptor (BCR). More importantly, we show that forced allelic inclusion modifies B cell fate; low quantities of self-antigen induce the selection and accumulation of increased numbers of self-reactive B cells with decreased expression of antigen-specific BCRs. By directly measuring antigen binding by intact B cells, we show that the low amounts of self-antigen select self-reactive B cells with a lower association constant. A fraction of these B cells is activated and secretes autoantibodies that form circulating immune complexes with self-antigen. These findings demonstrate that conventional B cells can undergo positive selection and that the fate of a self-reactive B cell depends on the quantity of self-antigen, the number of BCRs engaged, and on its overall antigen-binding avidity, rather than on the affinity of individual BCRs.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.20030955