Processing of switch transcripts is required for targeting of antibody class switch recombination

Antibody class switching is mediated by somatic recombination between switch regions of the immunoglobulin heavy chain gene locus. Targeting of recombination to particular switch regions is strictly regulated by cytokines through the induction of switch transcripts starting 5' of the repetitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 1998-12, Vol.188 (12), p.2369-2374
Hauptverfasser: Hein, K, Lorenz, M G, Siebenkotten, G, Petry, K, Christine, R, Radbruch, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibody class switching is mediated by somatic recombination between switch regions of the immunoglobulin heavy chain gene locus. Targeting of recombination to particular switch regions is strictly regulated by cytokines through the induction of switch transcripts starting 5' of the repetitive switch regions. However, switch transcription as such is not sufficient to target switch recombination. This has been shown in mutant mice, in which the I-exon and its promoter upstream of the switch region were replaced with heterologous promoters. Here we show that, in the murine germline targeted replacement of the endogenous gamma1 promoter, I-exon, and I-exon splice donor site by heterologous promoter and splice donor sites directs switch recombination in activated B lymphocytes constitutively to the gamma1 switch region. In contrast, switch recombination to IgG1 is inhibited in mutant mice, in which the replacement does not include the heterologous splice donor site. Our data unequivocally demonstrate that targeting of switch recombination to IgG1 in vivo requires processing of the Igamma1 switch transcripts. Either the processing machinery or the processed transcripts are involved in class switch recombination.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.188.12.2369