Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7
The complement system is an essential component of host defense against pathogens. Previous research in our laboratory identified StcE, a metalloprotease secreted by Escherichia coli O157:H7 that cleaves the serpin C1 esterase inhibitor (C1-INH), a major regulator of the classical complement cascade...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2004-04, Vol.199 (8), p.1077-1087 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complement system is an essential component of host defense against pathogens. Previous research in our laboratory identified StcE, a metalloprotease secreted by Escherichia coli O157:H7 that cleaves the serpin C1 esterase inhibitor (C1-INH), a major regulator of the classical complement cascade. Analyses of StcE-treated C1-INH activity revealed that surprisingly, StcE enhanced the ability of C1-INH to inhibit the classical complement-mediated lysis of sheep erythrocytes. StcE directly interacts with both cells and C1-INH, thereby binding C1-INH to the cell surface. This suggests that the augmented activity of StcE-treated C1-INH is due to the increased concentration of C1-INH at the sites of potential lytic complex formation. Indeed, removal of StcE abolishes the ability of C1-INH to bind erythrocyte surfaces, whereas the proteolysis of C1-INH is unnecessary to potentiate its inhibitory activity. Physical analyses showed that StcE interacts with C1-INH within its aminoterminal domain, allowing the unaffected serpin domain to interact with its targets. In addition, StcE-treated C1-INH provides significantly increased serum resistance to E. coli K-12 over native C1-INH. These data suggest that by recruiting C1-INH to cell surfaces, StcE may protect both E. coli O157:H7 and the host cells to which the bacterium adheres from complement-mediated lysis and potentially damaging inflammatory events. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20030255 |