Molecular characterization and functional analysis of murine interleukin 4 receptor allotypes
The murine interleukin 4 receptor (IL-4R) exists as a transmembrane protein transducing pleiotropic IL-4 functions, or as soluble (s)IL-4-binding molecule with potent immunoregulatory effects. In this study we identified and characterized a murine IL-4R allotype. Sequence analysis of the IL-4R cDNA...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 1997-11, Vol.186 (9), p.1419-1429 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The murine interleukin 4 receptor (IL-4R) exists as a transmembrane protein transducing pleiotropic IL-4 functions, or as soluble (s)IL-4-binding molecule with potent immunoregulatory effects. In this study we identified and characterized a murine IL-4R allotype. Sequence analysis of the IL-4R cDNA of BALB/c mice revealed 18 base substitutions leading to three extracellular and five cytoplasmic amino acid changes when compared with the published IL-4R sequence of C57BL/6 mice. Analyses with allotype-specific mAbs revealed that AKR/J and SJL/J mice possess the newly identified BALB/c IL-4R allotype whereas the IL-4Rs of C3H, CBA, DBA-2, and FVB/N mice are identical to that of the C57BL/6 mouse. The extracellular Thr49 to Ile substitution abrogates one N-glycosylation site in the naturally occurring BALB/c IL-4R as well as in the experimentally point mutated C57BL/6-T49I sIL-4R, and both molecules display a nearly threefold reduction in IL-4-neutralizing activity compared to the C57BL/6 sIL-4R. In line with this, a significantly enhanced dissociation rate of IL-4 was detected for the BALB/c IL-4R allotype by surface plasmon resonance and in radioligand binding studies with IL-4R-transfected cell lines. These findings suggest that the altered ligand binding behavior of the newly described IL-4R allotype may influence the IL-4 responsiveness, thus contributing to the diverse phenotypes of inbred mouse strains in IL-4-dependent diseases. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.186.9.1419 |