Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis

Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2003-09, Vol.198 (6), p.971-975
Hauptverfasser: Villa, Pia, Bigini, Paolo, Mennini, Tiziana, Agnello, Davide, Laragione, Teresa, Cagnotto, Alfredo, Viviani, Barbara, Marinovich, Marina, Cerami, Anthony, Coleman, Thomas R, Brines, Michael, Ghezzi, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)-expressing glia, microglia, and other inflammatory cells. In these experiments, we show that recombinant human EPO (rhEPO; 5,000 U/kg body weight, i.p.) markedly reduces astrocyte activation and the recruitment of leukocytes and microglia into an infarction produced by middle cerebral artery occlusion in rats. In addition, ischemia-induced production of the proinflammatory cytokines tumor necrosis factor, interleukin 6, and monocyte chemoattractant protein 1 concentration is reduced by >50% after rhEPO administration. Similar results were also observed in mixed neuronal-glial cocultures exposed to the neuronal-selective toxin trimethyl tin. In contrast, rhEPO did not inhibit cytokine production by astrocyte cultures exposed to neuronal homogenates or modulate the response of human peripheral blood mononuclear cells, rat glial cells, or the brain to lipopolysaccharide. These findings suggest that rhEPO attenuates ischemia-induced inflammation by reducing neuronal death rather than by direct effects upon EPO-R-expressing inflammatory cells.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.20021067