Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo
Interferon (IFN)-alpha/beta and interleukin (IL)-12 are cytokines critical in defense against viruses, but their cellular sources and mechanisms of regulation for in vivo expression remain poorly characterized. The studies presented here identified a novel subset of dendritic cells (DCs) as major pr...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2002-02, Vol.195 (4), p.517-528 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interferon (IFN)-alpha/beta and interleukin (IL)-12 are cytokines critical in defense against viruses, but their cellular sources and mechanisms of regulation for in vivo expression remain poorly characterized. The studies presented here identified a novel subset of dendritic cells (DCs) as major producers of the cytokines during murine cytomegalovirus (MCMV) but not lymphocytic choriomeningitis virus (LCMV) infections. These DCs differed from those activated by Toxoplasma antigen but were related to plasmacytoid cells, as assessed by their CD8alpha(+)Ly6G/C(+)CD11b(-) phenotype. Another DC subset (CD8alpha(2)Ly6G/C(-)CD11b(+)) also contributed to IL-12 production in MCMV-infected immunocompetent mice, modestly. However, it dramatically increased IL-12 expression in the absence of IFN-alpha/beta functions. Conversely, IFN-alpha/beta production was greatly reduced under these conditions. Thus, a cross-regulation of DC subset cytokine responses was defined, whereby secretion of type I IFNs by CD8alpha(+) DCs resulted in responses limiting IL-12 expression by CD11b(+) DCs but enhancing overall IFN-alpha/beta production. Taken together, these data indicate that CD8alpha(+)Ly6G/C(+)CD11b(-) DCs play important roles in limiting viral replication and regulating immune responses, through cytokine production, in some but not all viral infections. They also illustrate the plasticity of cellular sources for innate cytokines in vivo and provide new insights into the roles of IFNs in shaping immune responses to viruses. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20011672 |