Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6
Transition of immature antigen presenting cells (APCs) to the state of professional APCs is essential for initiation of cell-mediated immune responses to pathogens. Signal transduction via molecules of the Toll-like receptor (TLR)/interleukin 1 receptor (IL-1R) pathway is critical for activation of...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2000-08, Vol.192 (4), p.595-600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transition of immature antigen presenting cells (APCs) to the state of professional APCs is essential for initiation of cell-mediated immune responses to pathogens. Signal transduction via molecules of the Toll-like receptor (TLR)/interleukin 1 receptor (IL-1R) pathway is critical for activation of APCs either by pathogen-derived pattern ligands like lipopolysaccharides (LPS) or by CD40 ligation through T helper cells. The capacity of bacterial DNA (CpG-DNA) to induce APCs to differentiate into professional APCs represents an interesting discovery. However, the signaling pathways involved are poorly understood. Here we show that CpG-DNA activates the TLR/IL-1R signaling pathway via the molecules myeloid differentiation marker 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6), leading to activation of kinases of the IkappaB kinase complex and the c-jun NH(2)-terminal kinases. Moreover, cells of TLR2- and TLR4-deficient mice are activated by CpG-DNA, whereas cells of MyD88-deficient mice do not respond. The data suggest that CpG-DNA initiates signaling via the TLR/IL-1R pathway in APCs in a manner similar to LPS and to T helper cell-mediated CD40 ligation. Activation of the TLR/IL-1R signaling pathway by foreign bacterial DNA may be one way to initiate innate defense mechanisms against infectious pathogens in vivo. |
---|---|
ISSN: | 0022-1007 1540-9538 1892-1007 |
DOI: | 10.1084/jem.192.4.595 |