Altered hepatic transport of immunoglobulin A in mice lacking the J chain
We have created J chain knockout mice to define the physiologic role of the J chain in immunoglobulin synthesis and transport. The J chain is covalently associated with pentameric immunoglobulin (Ig) M and dimeric IgA and is also expressed in most IgG-secreting cells. J chain-deficient mice have nor...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 1995-12, Vol.182 (6), p.1905-1911 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have created J chain knockout mice to define the physiologic role of the J chain in immunoglobulin synthesis and transport. The J chain is covalently associated with pentameric immunoglobulin (Ig) M and dimeric IgA and is also expressed in most IgG-secreting cells. J chain-deficient mice have normal serum IgM and IgG levels but markedly elevated serum IgA. Although polymeric IgA was present in the mutant mice, a larger proportion of their serum IgA was monomeric than was found in wild-type mouse serum. Bile and fecal IgA levels were decreased in J chain-deficient mice compared with wild-type mice, suggesting inefficient transport of J chain-deficient IgA by hepatic polymeric immunoglobulin receptors (pIgR). The pIgR-mediated transport of serum-derived IgA from wild-type and mutant mice was assessed in Madin-Darby canine kidney (MDCK) cells transfected with the pIgR. These studies revealed selective transport by pIgR-expressing MDCK cells of wild-type IgA but not J chain-deficient IgA. We conclude that although the J chain is not required for IgA dimerization, it does affect the efficiency of polymerization or have a role in maintaining IgA dimer stability. Furthermore, the J chain is essential for efficient hepatic pIgR transport of IgA. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.182.6.1905 |