Crosslinkage of B lymphocyte surface immunoglobulin by anti-Ig or antigen induces prolonged oscillation of intracellular ionized calcium

Our results indicate that B lymphocytes stimulated with anti-Ig or antigen exhibit repetitive [Ca2+]i transients which persist for hours. The magnitude of these transients favors an important and ongoing role for [Ca2+]i elevation in antigen driven B cell activation. Repetitive Ca2+ transients may p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 1987-08, Vol.166 (2), p.601-606
Hauptverfasser: WILSON, H. A, GREENBLATT, D, POENIE, M, FINKELMAN, F. D, TSIEN, R. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our results indicate that B lymphocytes stimulated with anti-Ig or antigen exhibit repetitive [Ca2+]i transients which persist for hours. The magnitude of these transients favors an important and ongoing role for [Ca2+]i elevation in antigen driven B cell activation. Repetitive Ca2+ transients may prove to be a prevalent mechanism of Ca2+ signaling. In preliminary experiments (with L. E. Samelson and R. D. Klausner), we have observed Ca2+ transients in cloned T cells stimulated with antigen. Woods et al. have described repetitive free Ca2+ transients in hepatocytes stimulated with extracellular ligands promoting glycogenolysis, and suggest that the intervals of base-line [Ca2+]i levels explain the absence of mitochondrial overload in chronically stimulated cells. These considerations apply equally to B lymphocytes and recommend caution in delineating the range of Ca2+-mediated functions by prolonged coculture of cells with Ca2+ ionophores. Our experiments were done in a simple recording chamber with one cell type. No cell interactions were observed. Given the variety of indicator dyes now available, the technical approach we present, augmented by a more sophisticated recording chamber, is a potentially powerful tool for examining the intrinsic, and T- or accessory cell-dependent, physiology of B cell differentiation.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.166.2.601