Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito

Plasmodium falciparum gametocytes contain specific antigens, some of which (Mr 230,000, 48,000, 45,000) are expressed on the surface of the newly emerged macrogamete. A different antigen (Mr 25,000) surrounds the surface of the ookinete and, although present to some extent in the developing gametocy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 1985-11, Vol.162 (5), p.1460-1476
Hauptverfasser: VERMEULEN, A. N, PONNUDURAI, T, BECKERS, P. J. A, VERHAVE, J.-P, SMITS, M. A, MEUWISSEN, J. H. E. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmodium falciparum gametocytes contain specific antigens, some of which (Mr 230,000, 48,000, 45,000) are expressed on the surface of the newly emerged macrogamete. A different antigen (Mr 25,000) surrounds the surface of the ookinete and, although present to some extent in the developing gametocyte, is synthesized in high quantities by the macrogamete/zygote and expressed progressively on the transforming zygote surface. These antigens are targets of transmission blocking antibodies that are effective at two distinct points after gametogenesis: fertilization of the macrogamete and ookinete to oocyst development. The antigens involved in the fertilization blockade are the Mr 48 and 45 proteins, which are expressed on the macrogamete surface. The Mr 230 K coprecipitating protein probably plays no part in transmission block. mAb directed against the Mr 25 K ookinete surface protein blocked transmission without inhibiting ookinete formation, indicating that this protein has an important role in the transformation of ookinete into oocyst. A combination of mAb recognizing different epitopes on the same protein molecule acted synergistically in inhibiting oocyst formation. Using a mixture of two blocking mAb reacting against the Mr 48/45 and 25 K proteins, respectively, an additive blocking effect could be demonstrated.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.162.5.1460