Actin Turnover Is Required to Prevent Axon Retraction Driven by Endogenous Actomyosin Contractility

Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2002-09, Vol.158 (7), p.1219-1228
Hauptverfasser: Gallo, Gianluca, Yee, Hal F., Letourneau, Paul C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon extension requires F-actin turnover. The retraction of axons in response to the inhibition of F-actin turnover was dependent on myosin activity and regulated by RhoA and myosin light chain kinase. Significantly, the endogenous myosin-based contractility was sufficient to cause axon retraction, because jasp did not alter myosin activity. Based on these observations, we asked whether guidance cues that cause axon retraction (ephrin-A2) inhibit F-actin turnover. Axon retraction in response to ephrin-A2 correlated with decreased F-actin turnover and required RhoA activity. These observations demonstrate that axon extension depends on an interaction between endogenous myosin-driven contractility and F-actin turnover, and that guidance cues that cause axon retraction inhibit F-actin turnover.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200204140