Trans-SNARE Interactions Elicit Ca2+Efflux from the Yeast Vacuole Lumen
Ca2+transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPase...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2004-01, Vol.164 (2), p.195-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ca2+transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+release. Inhibitors of SNARE function prevent Ca2+release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+release. Sec17/18p promote sustained Ca2+release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+release from the vacuole lumen. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.200310105 |