Inducible Gene Expression and Protein Translocation Using Nontoxic Ligands Identified by a Mammalian Three-Hybrid Screen
The natural product rapamycin has been used to provide temporal and quantitative control of gene expression in animals through its ability to interact with two proteins simultaneously. A shortcoming of this approach is that rapamycin is an inhibitor of cell proliferation, the result of binding to FK...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-07, Vol.94 (15), p.7825-7830 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The natural product rapamycin has been used to provide temporal and quantitative control of gene expression in animals through its ability to interact with two proteins simultaneously. A shortcoming of this approach is that rapamycin is an inhibitor of cell proliferation, the result of binding to FKBP12-rapamycin-associated protein (FRAP). To overcome this limitation, nontoxic derivatives of rapamycin bearing bulky substituents at its C16-position were synthesized, each in a single step. The isosteric isopropoxy and methallyl substituents with the nonnatural C16-configuration abolish both binding to FRAP and inhibition of T cell proliferation. Binding proteins for these derivatives were identified from libraries of cDNAs encoding mutants of the FKBP12-rapamycin-binding (FRB) domain of FRAP by using a mammalian three-hybrid transcription assay. Targeting of the mutations was guided by the structure of the FKBP12-rapamycin-FRB ternary complex. Three compensatory mutations in the FRB domain, all along one face of an α -helix in a rapamycin-binding pocket, were identified that together restore binding of the rapamycin derivatives. Using this mutant FRB domain, one of the nontoxic rapamycin derivatives induced targeted gene expression in Jurkat T cells with an EC50below 10 nM. Another derivative was used to recruit a cytosolic protein to the plasma membrane, mimicking a process involved in many signaling pathways. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.94.15.7825 |