Activity-Dependent Nuclear Translocation and Intranuclear Distribution of NFATc in Adult Skeletal Muscle Fibers
Transcription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expre...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2001-10, Vol.155 (1), p.27-39 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transcription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S→A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc-GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A-sensitive appearance of fluorescent foci of NFATc-GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc-GFP without electrical stimulation. Nuclear translocation of NFATc-GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern-dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.200103020 |