Cyclic Nucleotide-Gated Channels on the Flagellum Control Ca2+ Entry into Sperm
Cyclic nucleotide-gated (CNG) channels are key elements of cGMP- and cAMP-signaling pathways in vertebrate photoreceptor cells and in olfactory sensory neurons, respectively. These channels form heterooligomeric complexes composed of at least two distinct subunits (α and β). The α subunit of cone ph...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 1998-07, Vol.142 (2), p.473-484 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclic nucleotide-gated (CNG) channels are key elements of cGMP- and cAMP-signaling pathways in vertebrate photoreceptor cells and in olfactory sensory neurons, respectively. These channels form heterooligomeric complexes composed of at least two distinct subunits (α and β). The α subunit of cone photoreceptors is also present in mammalian sperm. Here we identify one short and several long less abundant transcripts of β subunits in testis. The α and β subunits are expressed in a characteristic temporal and spatial pattern in sperm and precursor cells. In mature sperm, the α subunit is observed along the entire flagellum, whereas the short β subunit is restricted to the principal piece of the flagellum. These findings suggest that different forms of CNG channels coexist in the flagellum. Confocal microscopy in conjunction with the Ca2+ indicator Fluo-3 shows that the CNG channels serve as a Ca2+ entry pathway that responds more sensitively to cGMP than to cAMP. Assuming that CNG channel subtypes differ in their Ca2+ permeability, dissimilar localization of α and β subunits may give rise to a pattern of Ca2+ microdomains along the flagellum, thereby providing the structural basis for control of flagellar bending waves. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.142.2.473 |