Matrix-Bound Thrombospondin Promotes Angiogenesis in Vitro
Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from expl...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 1994-01, Vol.124 (1/2), p.183-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from explants of rat aorta. This serum-free model allowed us to study the angiogenic effect of TSP without the interference of attachment and growth factors present in serum. TSP promoted dose-dependent growth of microvessels and fibroblast-like cells. The number of microvessels in TSP-containing collagen and fibrin gels increased by 136 and 94%, respectively. The TSP effect was due in part to cell proliferation since a 97% increase in [3H]thymidine incorporation by the aortic culture was observed. The effect was TSP-specific because TSP preparations adsorbed with anti-TSP antibody showed no activity. TSP did not promote angiogenesis directly since no TSP-dependent growth of isolated endothelial cells could be demonstrated. Rather TSP directly stimulated the growth of aortic culture-derived myofibroblasts which in turn promoted microvessel formation when cocultured with the aortic explants. Angiogenesis was also stimulated by myofibroblast-conditioned medium. Partial characterization of the conditioned medium suggests that the angiogenic activity is due to heparin-binding protein(s) with molecular weight >30 kD. These results indicate that matrix-bound TSP can indirectly promote microvessel formation through growth-promoting effects on myofibroblasts and that TSP may be an important stimulator of angiogenesis and wound healing in vivo. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.124.1.183 |