Axial arrangement of the myosin rod in vertebrate thick filaments: immunoelectron microscopy with a monoclonal antibody to light meromyosin

A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 1985-09, Vol.101 (3), p.1115-1123
Hauptverfasser: Shimizu, T, Dennis, J.E, Masaki, T, Fischman, D.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point ∼92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of ∼13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, ∼68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (∼13 nm apart) with a distance between stripes 1 and 1′, on each half of the bare zone, of ∼18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.101.3.1115