Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots

Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (15), p.6055-6060
Hauptverfasser: Lee, J.Y, Colinas, J, Wang, J.Y, Mace, D, Ohler, U, Benfey, P.N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF's upstream noncoding sequence (including the 5'UTR) fused to the GFP reporter gene alone or together with the TF's coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map. An automated image analysis method for quantifying GFP signals in different tissues was developed and used to validate our visual comparison method. From these combined analyses, we found that (i) the upstream noncoding sequence was sufficient to recapitulate the mRNA expression pattern for 80% (35/44) of the TFs, and (ii) 25% of the TFs undergo posttranscriptional regulation via microRNA-mediated mRNA degradation (2/24) or via intercellular protein movement (6/24). The results suggest that, for Arabidopsis TFs, upstream noncoding sequences are major contributors to mRNA expression pattern establishment, but modulation of transcription factor protein expression pattern after transcription is relatively frequent. This study provides a systematic overview of regulation of TF expression at a cellular level.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0510607103