Inhibition of caveolar uptake, SV40 infection, and β1-integrin signaling by a nonnatural glycosphingolipid stereoisomer
Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveola...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2007-03, Vol.176 (7), p.895-901 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and β1-integrin signaling are stimulated by exogenous glycosphingolipids (GSLs). In this study, we show that a synthetic GSL with nonnatural stereochemistry, β-D-lactosyl-N-octanoyl-L-threo-sphingosine, (1) selectively inhibits caveolar endocytosis and SV40 virus infection, (2) blocks the clustering of lipids and proteins into GSLs and cholesterol-enriched microdomains (rafts) at the PM, and (3) inhibits β1-integrin activation and downstream signaling. Finally, we show that small interfering RNA knockdown of β1 integrin in human skin fibroblasts blocks caveolar endocytosis and the stimulation of signaling by a GSL with natural stereochemistry. These experiments identify a new compound that can interfere with biological processes by inhibiting microdomain formation and also identify β1 integrin as a potential mediator of signaling by GSLs. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.200609149 |