Palmitate-induced apoptosis of microvascular endothelial cells and pericytes

Recent observations in the EURODIAB Complications Study demonstrated that markers of insulin resistance are strong risk factors for retinopathy incidence in patients with diabetes. However, the molecular mechanism underlying this remains to be elucidated. In this study, we investigated the influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine (Cambridge, Mass.) Mass.), 2002-04, Vol.8 (4), p.179-184
Hauptverfasser: Yamagishi, Sho-Ichi, Okamoto, Tamami, Amano, Shinjiro, Inagaki, Yosuke, Koga, Kohachiro, Koga, Mari, Choei, Hiroshi, Sasaki, Nobuyuki, Kikuchi, Seiji, Takeuchi, Masayoshi, Makita, Zenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent observations in the EURODIAB Complications Study demonstrated that markers of insulin resistance are strong risk factors for retinopathy incidence in patients with diabetes. However, the molecular mechanism underlying this remains to be elucidated. In this study, we investigated the influence of palmitate, a major saturated free fatty acid in plasma, on the apoptotic cell death of cultured microvascular endothelial cells (EC) and retinal pericytes. The intracellular formation of reactive oxygen species (ROS) was detected using the fluorescent probe CM-H(2)DCFDA. DNA synthesis was determined by measuring [(3) H]-thymidine incorporation into cells. DNA fragmentations of EC were quantitatively analyzed in an enzyme-linked immunosorbent assay, and DNA laddering was evaluated on agarose gel electrophoresis. Palmitate increased ROS generation in microvascular EC. Furthermore, palmitate significantly inhibited DNA synthesis and induced apoptotic cell death in EC, which were completely prevented by an antioxidant, N-acetylcysteine. Palmitate up-regulated pericyte mRNA levels of a receptor for advanced glycation end products (AGE), and thereby potentiated the apoptotic effects of AGE on pericytes. The results suggest that palmitate could induce apoptotic cell death in microvascular EC and pericytes through the overgeneration of intracellular ROS, and thus be involved in the development of diabetic retinopathy.
ISSN:1076-1551
1528-3658
DOI:10.1007/bf03402010