Unaltered nodulation competitiveness of a strain of Bradyrhizobium sp. (Lotus) after a decade in soil

A Bradyrhizobium sp. (Lotus) strain that formed a soil population that was highly competitive for nodulation of Lotus pedunculatus 11 years after its introduction into a field soil and a culture of the same strain stored lyophilized were compared with an antibiotic-resistant mutant in respect of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1989-11, Vol.55 (11), p.3000-3008
Hauptverfasser: Lochner, H.H. (Plant Protection Research Institute, Pretoria, South Africa), Strijdom, B.W, Law, I.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Bradyrhizobium sp. (Lotus) strain that formed a soil population that was highly competitive for nodulation of Lotus pedunculatus 11 years after its introduction into a field soil and a culture of the same strain stored lyophilized were compared with an antibiotic-resistant mutant in respect of their nodulation competitiveness. The mutant was less competitive than the wild-type strain it was isolated from and had to be present at a cell ratio of 5.76:1 in mixed inoculum in sand culture to form 50% of the nodules on L. pedunculatus (50% nodulation value, 5.76). The 50% nodulation values for a soil population of the mutant mixed with soil populations of the lyophilized and field soil strain were, respectively, 6.83 and 5.77, indicating that the field soil strain was not significantly different from the lyophilized strain in nodulation competitiveness. A 50% nodulation value of 11.18 obtained when soil containing a recently established mutant population was mixed with the field soil containing the population established 11 years before, indicating that the plant infection technique underestimated cell numbers of the field soil population by 100%. Nodulation competitiveness was unaffected by the size of the strain populations in the range of 100 to 1,000 cells per g of soil; at 10 cells per g a significant correlation between strain ratios in nodules and in soil was still evident. The results indicated that apparently superior nodulation competitiveness of a well-established soil population relative to that of a subsequently introduced strain may not necessarily reflect the intrinsic competitive abilities of the strain(s) involved. The soil strain did not differ from laboratory-maintained cultures in antigenic properties, effectiveness, or whole cell protein electrophoresis profiles
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.55.11.3000-3008.1989