Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients
Multiple myeloma (MM) is a B-lineage malignancy characterized by diverse genetic subtypes and clinical outcomes. The recurrent immunoglobulin heavy chain (IgH) switch translocation, t(4;14)(p16;q32), is associated with poor outcome, though the mechanism is unclear. Quantitative reverse-transcription...
Gespeichert in:
Veröffentlicht in: | Blood 2005-05, Vol.105 (10), p.4060-4069 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple myeloma (MM) is a B-lineage malignancy characterized by diverse genetic subtypes and clinical outcomes. The recurrent immunoglobulin heavy chain (IgH) switch translocation, t(4;14)(p16;q32), is associated with poor outcome, though the mechanism is unclear. Quantitative reverse-transcription–polymerase chain reaction (RT-PCR) for proposed target genes on a panel of myeloma cell lines and purified plasma cells showed that only transcripts originating from the WHSC1/MMSET/NSD2 gene are uniformly dysregulated in all t(4;14)POS patients. The different transcripts detected, multiple myeloma SET domain containing protein (MMSET I), MMSET II, Exon 4a/MMSET III, and response element II binding protein (RE-IIBP), are produced by alternative splicing and alternative transcription initiation events. Translation of the various transcripts, including those from major breakpoint region 4-2 (MB4-2) and MB4-3 breakpoint variants, was confirmed by transient transfection and immunoblotting. Green fluorescent protein (GFP)–tagged MMSET I and II, corresponding to proteins expressed in MB4-1 patients, localized to the nucleus but not nucleoli, whereas the MB4-2 and MB4-3 proteins concentrate in nucleoli. Cloning and localization of the Exon 4a/MMSET III splice variant, which contains the protein segment lost in the MB4-2 variant, identified a novel protein domain that prevents nucleolar localization. Kinetic studies using photobleaching suggest that the breakpoint variants are functionally distinct from wild-type proteins. In contrast, RE-IIBP is universally dysregulated and also potentially functional in all t(4;14)POS patients irrespective of fibroblast growth factor receptor 3 (FGFR3) expression or breakpoint type. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2004-09-3704 |