A Long-Acting, MonoPEGylated Human Growth Hormone Analog is a Potent Stimulator of Weight Gain and Bone Growth in Hypophysectomized Rats

Recombinant human Growth Hormone (GH) is used to treat growth hormone deficiency in children and adults, and wasting in AIDS patients. GH has a circulating half-life of only a few hours in humans and must be administered to patients by daily injection for maximum effectiveness. Previous studies show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2007-01, Vol.148 (4), p.1590-1597
Hauptverfasser: Cox, George N., Rosendahl, Mary S., Chlipala, Elizabeth A., Smith, Darin J., Carlson, Sharon J., Doherty, Daniel H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recombinant human Growth Hormone (GH) is used to treat growth hormone deficiency in children and adults, and wasting in AIDS patients. GH has a circulating half-life of only a few hours in humans and must be administered to patients by daily injection for maximum effectiveness. Previous studies showed that longer-acting forms of GH could be created by modification of GH with multiple 5 kDa amine-reactive polyethylene glycols (PEGs). Eight of nine lysine residues and the N-terminal amino acid were modified to varying extents by amine-PEGylation of GH. The amine-PEGylated GH product comprised a complex mixture of multiple PEGylated species that differed from one another in mass, in vitro bioactivity and in vivo potency. In vitro bioactivity of GH was reduced 100- to 1,000-fold by extensive amine-PEGylation of the protein. Here we describe a homogeneously modified, monoPEGylated GH protein that possesses near complete in vitro bioactivity, a long half-life and increased potency in vivo . The monoPEGylated GH was created by substituting cysteine for threonine-3 (T3C) of GH, followed by modification of the added cysteine residue with a single 20 kDa cysteine-reactive PEG. The PEG-T3C protein has an approximate 8-fold longer half-life than GH following sc administration to rats. Every other day or every third day administration of PEG-T3C stimulates increases in body weight and tibial epiphysis growth comparable to that produced by daily administration of GH in hypophysectomized rats. Long-acting, monoPEGylated GH analogs such as PEG-T3C are promising candidate for future testing in humans.
ISSN:0013-7227
DOI:10.1210/en.2006-1170