Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells
To assess the role of S fimbriae in the pathogenesis of Escherichia coli meningitis, transformants of E. coli strains with or without S fimbriae plasmid were compared for their binding to microvessel endothelial cells isolated from bovine brain cortices (BMEC). The BMEC's displayed a cobbleston...
Gespeichert in:
Veröffentlicht in: | The American journal of pathology 1994-11, Vol.145 (5), p.1228-1236 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To assess the role of S fimbriae in the pathogenesis of Escherichia coli meningitis, transformants of E. coli strains with or without S fimbriae plasmid were compared for their binding to microvessel endothelial cells isolated from bovine brain cortices (BMEC). The BMEC's displayed a cobblestone appearance, were positive for factor VIII, carbonic anhydrase IV, took up fluorescent-labeled acetylated low density lipoprotein, and exhibited gamma glutamyl transpeptidase activity. Binding of S fimbriated E. coli to BMEC was approximately threefold greater than nonfimbriated E. coli Similarly S fimbriated E. coli bound to human brain endothelial cells approximately threefold greater than nonfimbriated E. coli. Binding was reduced approximately 60% by isolated S fimbriae and about 80% by anti-S adhesin antibody. Mutating the S adhesin gene resulted in a complete loss of the binding, whereas mutagenesis of the major S fimbriae subunit gene sfaA did not significantly affect binding. Pretreatment of BMEC with neuraminidase or prior incubation of S fimbriated E. coli with NeuAc alpha 2,3-sialyl lactose completely abolished binding. These findings indicate that S fimbriated E. coli bind to NeuAc alpha 2,3-galactose containing glycoproteins on brain endothelial cells via a lectin-like activity of SfaS adhesin. This might be an important early step in the penetration of bacteria across the blood-brain barrier in the development of E. coli meningitis. |
---|---|
ISSN: | 0002-9440 1525-2191 |