Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation

Fibroblast growth factor 2 (FGF2) inhibits oligodendrocyte progenitor cell (OPC) differentiation during development and limits remyelination following chronic demyelination. The current study examines the mechanism underlying this effect of FGF2 expression on OPC differentiation. Retroviral lineage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2006-11, Vol.54 (6), p.578-590
Hauptverfasser: Zhou, Yong-Xing, Flint, Nicole C., Murtie, Joshua C., Le, Tuan Q., Armstrong, Regina C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast growth factor 2 (FGF2) inhibits oligodendrocyte progenitor cell (OPC) differentiation during development and limits remyelination following chronic demyelination. The current study examines the mechanism underlying this effect of FGF2 expression on OPC differentiation. Retroviral lineage tracing demonstrates a direct in vivo effect of FGF receptor (FGFR) signaling on OPC differentiation. Retrovirus expressing a dominant negative FGFR construct (FGFRdn) and green fluorescent protein (GFP) was injected into the dorsal columns of postnatal day 7 (P7) mice followed by perfusion at P28. Among the GFP‐labeled cells, FGFRdn retrovirus generated a higher proportion of oligodendrocytes than did control infections. This result from FGFRdn expression in OPCs was similar to the result obtained in our previous study using control retrovirus in FGF2 null mice. Further, in vitro retroviral siRNA expression distinguishes the function of specific FGFR isoforms in OPC responses to FGF2. FGF2 inhibition of OPC differentiation was effectively blocked by siRNA targeted to FGFR1, but not FGFR2 or FGFR3. We propose a model of direct FGF2 activation of FGFR1 leading to inhibition of OPC differentiation. This signaling pathway may be an important regulator of oligodendrocyte generation during myelination in development and may perturb OPC generation of remyelinating oligodendrocytes in demyelinating disease. Published 2006 Wiley‐Liss, Inc.
ISSN:0894-1491
1098-1136
DOI:10.1002/glia.20410