Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS
The pituitary adenylate cyclase-activating polypeptide (PACAP) receptor is a class II G protein-coupled receptor that contributes to many different cellular functions including neurotransmission, neuronal survival, and synaptic plasticity. The solution structure of the potent antagonist PACAP (resid...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (19), p.7875-7880 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pituitary adenylate cyclase-activating polypeptide (PACAP) receptor is a class II G protein-coupled receptor that contributes to many different cellular functions including neurotransmission, neuronal survival, and synaptic plasticity. The solution structure of the potent antagonist PACAP (residues 6'-38') complexed to the N-terminal extracellular (EC) domain of the human splice variant hPAC1-R-short (hPAC1-RS) was determined by NMR. The PACAP peptide adopts a helical conformation when bound to hPAC1-RS with a bend at residue A18' and makes extensive hydrophobic and electrostatic interactions along the exposed β-sheet and interconnecting loops of the N-terminal EC domain. Mutagenesis data on both the peptide and the receptor delineate the critical interactions between the C terminus of the peptide and the C terminus of the EC domain that define the high affinity and specificity of hormone binding to hPAC1-RS. These results present a structural basis for hPAC1-RS selectivity for PACAP versus the vasoactive intestinal peptide and also differentiate PACAP residues involved in binding to the N-terminal extracellular domain versus other parts of the full-length hPAC1-RS receptor. The structural, mutational, and binding data are consistent with a model for peptide binding in which the C terminus of the peptide hormone interacts almost exclusively with the N-terminal EC domain, whereas the central region makes contacts to both the N-terminal and other extracellular parts of the receptor, ultimately positioning the N terminus of the peptide to contact the transmembrane region and result in receptor activation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0611397104 |