Cysteine-Rich Domain of Human ADAM 12 (Meltrin α) Supports Tumor Cell Adhesion

The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin α) was up-regulated in several human carcinomas and could be detected along the tumor cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 1999-05, Vol.154 (5), p.1489-1501
Hauptverfasser: Iba, Kousuke, Albrechtsen, Reidar, Gilpin, Brent J., Loechel, Frosty, Wewer, Ulla M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin α) was up-regulated in several human carcinomas and could be detected along the tumor cell membranes. Because of this intriguing staining pattern, we investigated whether human ADAM 12 supports tumor cell adhesion. Using an in vitro assay using recombinant polypeptides expressed in Escherichia coli, we examined the ability of individual domains of human ADAM 12 and ADAM 15 to support tumor cell adhesion. We found that the disintegrin-like domain of human ADAM 15 supported adhesion of αvβ3-expressing A375 melanoma cells. In the case of human ADAM 12, however, recombinant polypeptides of the cysteine-rich domain but not the disintegrin-like domain supported cell adhesion of a panel of carcinoma cell lines. On attachment to recombinant polypeptides from the cysteine-rich domain of human ADAM 12, most tumor cell lines, such as MDA-MB-231 breast carcinoma cells, were rounded and associated with numerous actin-containing filopodia and used a cell surface heparan sulfate proteoglycan to attach. Finally, we demonstrated that authentic full-length human ADAM 12 could bind to heparin Sepharose. Together these results suggest a novel role of the cysteine-rich domain of ADAM 12 — that of supporting tumor cell adhesion.
ISSN:0002-9440
1525-2191
DOI:10.1016/S0002-9440(10)65403-X