Opening-Up of Liposomal Membranes by Talin
Morphological changes of liposomes caused by interactions between liposomal membranes and talin, a cytoskeletal submembranous protein, were studied by direct, real-time observation by using high-intensity dark-field microscopy. Surprisingly, when talin was added to a liposome solution, liposomes ope...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1998-02, Vol.95 (3), p.1026-1031 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Morphological changes of liposomes caused by interactions between liposomal membranes and talin, a cytoskeletal submembranous protein, were studied by direct, real-time observation by using high-intensity dark-field microscopy. Surprisingly, when talin was added to a liposome solution, liposomes opened stable holes and were transformed into cup-shaped liposomes. The holes became larger with increasing talin concentration, and finally the cup-shaped liposomes were transformed into lipid bilayer sheets. These morphological changes were reversed by protein dilution, i.e., the sheets could be transformed back into closed spherical liposomes. We demonstrated that talin was localized mainly along the membrane verges, presumably avoiding exposure of its hydrophobic portion at the edge of the lipid bilayer. This is the first demonstration that a lipid bilayer can stably maintain a free verge in aqueous solution. This finding refutes the established dogma that all lipid bilayer membranes inevitably form closed vesicles and suggests that talin is a useful tool for manipulating liposomes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.95.3.1026 |