Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation

tob is a member of an emerging family of genes with antiproliferative function. Tob is rapidly phosphorylated at Ser 152, Ser 154, and Ser 164 by Erk1 and Erk2 upon growth-factor stimulation. Oncogenic Ras-induced transformation and growth-factor-induced cell proliferation are efficiently suppressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2002-06, Vol.16 (11), p.1356-1370
Hauptverfasser: Suzuki, Toru, K-Tsuzuku, Junko, Ajima, Rieko, Nakamura, Takahisa, Yoshida, Yutaka, Yamamoto, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:tob is a member of an emerging family of genes with antiproliferative function. Tob is rapidly phosphorylated at Ser 152, Ser 154, and Ser 164 by Erk1 and Erk2 upon growth-factor stimulation. Oncogenic Ras-induced transformation and growth-factor-induced cell proliferation are efficiently suppressed by mutant Tob that carries alanines but not glutamates, mimicking phosphoserines, at these sites. Wild-type Tob inhibits cell growth when the three serine residues are not phosphorylated but is less inhibitory when the serines are phosphorylated. Because growth of Rb-deficient cells was not affected by Tob, Tob appears to function upstream of Rb. Intriguingly, cyclin D1 expression is elevated in serum-starved tob(-/-) cells. Reintroduction of wild-type Tob and mutant Tob with serine-to-alanine but not to glutamate mutations on the Erk phosphorylation sites in these cells restores the suppression of cyclin D1 expression. Finally, the S-phase population was significantly increased in serum-starved tob(-/-) cells as compared with that in wild-type cells. Thus, Tob inhibits cell growth by suppressing cyclin D1 expression, which is canceled by Erk1- and Erk2-mediated Tob phosphorylation. We propose that Tob is critically involved in the control of early G(1) progression.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.962802