Antagonists and non-toxic variants of the dominant wheat gliadin T cell epitope in coeliac disease

Background: Coeliac disease (CD) is due to an inappropriate T cell mediated response to specific gluten peptides. Measured by interferon γ (IFN-γ) ELISPOT, about half of the gliadin specific T cells induced with in vivo wheat gluten exposure in HLA-DQ2+ CD are specific for an α/β-gliadin peptide (p5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2006-04, Vol.55 (4), p.485-491
Hauptverfasser: Anderson, R P, van Heel, D A, Tye-Din, J A, Jewell, D P, Hill, A V S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Coeliac disease (CD) is due to an inappropriate T cell mediated response to specific gluten peptides. Measured by interferon γ (IFN-γ) ELISPOT, about half of the gliadin specific T cells induced with in vivo wheat gluten exposure in HLA-DQ2+ CD are specific for an α/β-gliadin peptide (p57–73 QE65; QLQPFPQPELPYPQPQS) that includes two overlapping T cell epitopes (PFPQPELPY and PQPELPYPQ). Aim: To define minimally substituted variants of p57–73 QE65 universally devoid of IFN-γ stimulatory capacity but capable of antagonising IFN-γ secretion from polyclonal T cells specific for p57–73 QE65. Methods: Peripheral blood mononuclear cells collected from 75 HLA-DQ2+ CD patients after in vivo gluten challenge were used in overnight ELISPOT assays to screen 218 single or double substituted variants of p57–73 QE65 for cytokine stimulatory and antagonist activity. Results: The region p60–71 (PFPQPELPYPQP) and especially p64–67 (PELP) was sensitive to substitution. Twelve substitutions in p64–67 stimulated no IFN-γ ELISPOT response. Among 131 partial agonists identified, 45 produced statistically significant inhibition of IFN-γ ELISPOT responses when cocultured in fivefold excess with p57–73 QE65 (n = 10). Four substituted variants of p57–73 QE65 were inactive by IFN-γ ELISPOT but consistently antagonised IFN-γ ELISPOT responses to p57–73 QE65, and also retained interleukin 10 stimulatory capacity similar to p57–73 QE65. Conclusions: Altered peptide ligands of p57–73 QE65, identified using polyclonal T cells from multiple HLA-DQ2+ CD donors, have properties in vitro that suggest that a single substitution to certain α/β-gliadins could abolish their capacity to stimulate IFN-γ from CD4 T cells and also have anti-inflammatory or protective effects in HLA-DQ2+ CD.
ISSN:0017-5749
1468-3288
DOI:10.1136/gut.2005.064550