A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis

This work describes the first cell-based model of tumor-induced angiogenesis. At the extracellular level, the model describes diffusion, uptake, and decay of tumor-secreted pro-angiogenic factor. At the cellular level, the model uses the cellular Potts model based on system-energy reduction to descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2007-05, Vol.92 (9), p.3105-3121
Hauptverfasser: Bauer, Amy L., Jackson, Trachette L., Jiang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work describes the first cell-based model of tumor-induced angiogenesis. At the extracellular level, the model describes diffusion, uptake, and decay of tumor-secreted pro-angiogenic factor. At the cellular level, the model uses the cellular Potts model based on system-energy reduction to describe endothelial cell migration, growth, division, cellular adhesion, and the evolving structure of the stroma. Numerical simulations show: 1), different tumor-secreted pro-angiogenic factor gradient profiles dramatically affect capillary sprout morphology; 2), average sprout extension speeds depend on the proximity of the proliferating region to the sprout tip, and the coordination of cellular functions; and 3), inhomogeneities in the extravascular tissue lead to sprout branching and anastomosis, phenomena that emerge without any prescribed rules. This model provides a quantitative framework to test hypotheses on the biochemical and biomechanical mechanisms that control tumor-induced angiogenesis.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.106.101501