Oxidative Damage of DJ-1 Is Linked to Sporadic Parkinson and Alzheimer Diseases
Mutations in DJ-1 cause an autosomal recessive, early onset familial form of Parkinson disease (PD). However, little is presently known about the role of DJ-1 in the more common sporadic form of PD and in other age-related neurodegenerative diseases, such as Alzheimer disease (AD). Here we report th...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2006-04, Vol.281 (16), p.10816-10824 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutations in DJ-1 cause an autosomal recessive, early onset familial form of Parkinson disease (PD). However, little is presently known about the role of DJ-1 in the more common sporadic form of PD and in other age-related neurodegenerative diseases, such as Alzheimer disease (AD). Here we report that DJ-1 is oxidatively damaged in the brains of patients with idiopathic PD and AD. By using a combination of two-dimensional gel electrophoresis and mass spectrometry, we have identified 10 different DJ-1 isoforms, of which the acidic isoforms (pI 5.5 and 5.7) of DJ-1 monomer and the basic isoforms (pI 8.0 and 8.4) of SDS-resistant DJ-1 dimer are selectively accumulated in PD and AD frontal cortex tissues compared with age-matched controls. Quantitative Western blot analysis shows that the total level of DJ-1 protein is significantly increased in PD and AD brains. Mass spectrometry analyses reveal that DJ-1 is not only susceptible to cysteine oxidation but also to previously unsuspected methionine oxidation. Furthermore, we show that DJ-1 protein is irreversibly oxidized by carbonylation as well as by methionine oxidation to methionine sulfone in PD and AD. Our study provides new insights into the oxidative modifications of DJ-1 and indicates association of oxidative damage to DJ-1 with sporadic PD and AD. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M509079200 |