Aortic Valve Endothelial Cells Undergo Transforming Growth Factor-β-Mediated and Non-Transforming Growth Factor-β-Mediated Transdifferentiation in Vitro
Cardiac valves arise from endocardial cushions, specialized regions of the developing heart that are formed by an endothelial-to-mesenchymal cell transdifferentiation. Whether and to what extent this transdifferentiation is retained in mature heart valves is unknown. Herein we show that endothelial...
Gespeichert in:
Veröffentlicht in: | The American journal of pathology 2001-10, Vol.159 (4), p.1335-1343 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiac valves arise from endocardial cushions, specialized regions of the developing heart that are formed by an endothelial-to-mesenchymal cell transdifferentiation. Whether and to what extent this transdifferentiation is retained in mature heart valves is unknown. Herein we show that endothelial cells from mature valves can transdifferentiate to a mesenchymal phenotype. Using induction of α-smooth muscle actin (α-SMA), an established marker for this process, two distinct pathways of transdifferentiation were identified in clonally derived endothelial cell populations isolated from ovine aortic valve leaflets. α-SMA expression was induced by culturing clonal endothelial cells in medium containing either transforming growth factor-β or low levels of serum and no basic fibroblast growth factor. Cells induced to express α-SMA exhibited markedly increased migration in response to platelet-derived growth factor-BB, consistent with a mesenchymal phenotype. A population of the differentiated cells co-expressed CD31, an endothelial marker, along with α-SMA, as seen by double-label immunofluorescence. Similarly, this co-expression of endothelial markers and α-SMA was detected in a subpopulation of cells in frozen sections of aortic valves, suggesting the transdifferentiation may occur
in vivo. Hence, the clonal populations of valvular endothelial cells described here provide a powerful
in vitro model for dissecting molecular events that regulate valvular endothelium. |
---|---|
ISSN: | 0002-9440 1525-2191 |
DOI: | 10.1016/S0002-9440(10)62520-5 |