Down-Regulation of Caveolin-1, a Candidate Tumor Suppressor Gene, in Sarcomas

Caveolae are plasma membrane microdomains that have been implicated in the regulation of several intracellular signaling pathways. Previous studies suggest that caveolin-1, the main structural protein of caveolae, could function as a tumor suppressor. Caveolin-1 is highly expressed in terminally dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2001-03, Vol.158 (3), p.833-839
Hauptverfasser: Wiechen, Kai, Sers, Christine, Agoulnik, Alexander, Arlt, Katharina, Dietel, Manfred, Schlag, Peter M., Schneider, Ulrike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caveolae are plasma membrane microdomains that have been implicated in the regulation of several intracellular signaling pathways. Previous studies suggest that caveolin-1, the main structural protein of caveolae, could function as a tumor suppressor. Caveolin-1 is highly expressed in terminally differentiated mesenchymal cells including adipocytes, endothelial cells, and smooth muscle cells. To study whether caveolin-1 is a possible tumor suppressor in human mesenchymal tumors, we have analyzed the expression using immunohistochemistry in normal mesenchymal tissues, 22 benign and 79 malignant mesenchymal tumors. Caveolin-1 was found to be expressed in fibromatoses, leiomyomas, hemangiomas, and lipomas at high levels comparable to normal mesenchymal tissues. The expression of caveolin-1 was slightly reduced in four of six well-differentiated liposarcomas and strongly reduced or lost in three of three fibrosarcomas, 17 of 20 leiomyosarcomas, 16 of 16 myxoid/round cell/pleomorphic liposarcomas, five of eight angiosarcomas, 15 of 18 malignant fibrous histiocytomas, and eight of eight synovial sarcomas. The immunohistochemical findings were confirmed by Western blot analysis in a number of tumors. High levels of both the 24-kd [α]- and the 21-kd [β]-isoform of caveolin-1 were detected in the nontumorigenic human fibroblast cell line IMR-90. In contrast, in HT-1080 human fibrosarcoma cells, caveolin-1 is strongly down-regulated. We show that the [α]-isoform of caveolin-1 is potently up-regulated in HT-1080 cells by inhibition of the mitogen-activated protein kinase-signaling pathway with the specific inhibitor PD 98059, whereas the specific inhibitor of DNA methylation 5-aza-2′-deoxycytidine only marginally up-regulates caveolin-1. In addition, re-expression of caveolin-1 in HT-1080 fibrosarcoma cells potently inhibited colony formation. From these we conclude that caveolin-1 is likely to act as a tumor suppressor gene in human sarcomas.
ISSN:0002-9440
1525-2191
DOI:10.1016/S0002-9440(10)64031-X