New Insight into Intrachromosomal Deletions Induced by Chrysotile in the gpt Delta Transgenic Mutation Assay
Background: Genotoxicity is often a prerequisite to the development of malignancy. Considerable evidence has shown that exposure to asbestos fibers results in the generation of chromosomal aberrations and multilocus mutations using various in vitro approaches. However, there is less evidence to demo...
Gespeichert in:
Veröffentlicht in: | Environmental health perspectives 2007-01, Vol.115 (1), p.87-92 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Genotoxicity is often a prerequisite to the development of malignancy. Considerable evidence has shown that exposure to asbestos fibers results in the generation of chromosomal aberrations and multilocus mutations using various in vitro approaches. However, there is less evidence to demonstrate the contribution of deletions to the mutagenicity of asbestos fibers in vivo. Objectives: In the present study, we investigated the mutant fractions and the patterns induced by chrysotile fibers in gpt delta transgenic mouse primary embryo fibroblasts (MEFs) and compared the results obtained with hydrogen peroxide (H2O2) in an attempt to illustrate the role of oxyradicals in fiber mutagenesis. Results: Chrysotile fibers induced a dose-dependent increase in mutation yield at the redBA/gam loci in transgenic MEF cells. The number of λ mutants losing both redBA and gam loci induced by chrysotiles at a dose of$1 \mu g/cm^2$increased by > 5-fold relative to nontreated controls (p < 0.005). Mutation spectra analyses showed that the ratio of λ mutants losing the redBA/gam region induced by chrysotiles was similar to those induced by equitoxic doses of H2O2. Moreover, treatment with catalase abrogated the accumulation of$\gamma-H2AX$, a biomarker of DNA double-strand breaks, induced by chrysotile fibers. Conclusions: Our results provide novel information on the frequencies and types of mutations induced by asbestos fibers in the gpt delta transgenic mouse mutagenic assay, which shows great promise for evaluating fiber/particle mutagenicity in vivo. |
---|---|
ISSN: | 0091-6765 1552-9924 |
DOI: | 10.1289/ehp.9425 |