Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts
Epigallocatechin gallate (EGCG) is the most abundant polyphenolic flavonoid in green tea. Catechin and its derivatives, including EGCG, are widely believed to function as antioxidants. Here we demonstrate that both EGCG and green tea extract (GTE) cause oxidative stress-related responses in the budd...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2007-01, Vol.73 (2), p.572-580 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epigallocatechin gallate (EGCG) is the most abundant polyphenolic flavonoid in green tea. Catechin and its derivatives, including EGCG, are widely believed to function as antioxidants. Here we demonstrate that both EGCG and green tea extract (GTE) cause oxidative stress-related responses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe under weak alkaline conditions in terms of the activation of oxidative-stress-responsive transcription factors. GTE as well as EGCG induced the nuclear localization of Yap1 in S. cerevisiae, which was repressed by the addition of catalase but not by the addition of superoxide dismutase. The same phenomena were observed for the nucleocytoplasmic localization of Msn2 in S. cerevisiae and Pap1, a Yap1 homologue, in S. pombe. The formation of intramolecular disulfide bonds has been proposed to be crucial for the H₂O₂-induced nuclear localization of Yap1, and we verified the importance of cysteine residues of Yap1 in response to EGCG and GTE. Additionally, we show that EGCG and GTE produce H₂O₂ in a weak alkaline medium. Finally, we conclude that tea polyphenols are able to act as prooxidants to cause a response to oxidative stress in yeasts under certain conditions. |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/aem.01963-06 |