Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts

Articular destruction by invading synovial fibroblasts is a typical feature in rheumatoid arthritis (RA),. Recent data support the hypothesis that key players in this scenario are transformed-appearing synovial fibroblasts at the site of invasion into articular cartilage and bone. They maintain thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthritis research 1999-01, Vol.1 (1), p.71-80, Article 71
Hauptverfasser: Kullmann, F, Judex, M, Ballhorn, W, Jüsten, H P, Wessinghage, D, Welsh, J, Yen, T J, Lang, B, Hittle, J C, McClelland, M, Gay, S, Schölmerich, J, Müller-Ladner, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Articular destruction by invading synovial fibroblasts is a typical feature in rheumatoid arthritis (RA),. Recent data support the hypothesis that key players in this scenario are transformed-appearing synovial fibroblasts at the site of invasion into articular cartilage and bone. They maintain their aggressive phenotype toward cartilage, even when first cultured and thereafter coimplanted together with normal human cartilage into severe combined immunodeficient mice for and extended period of time. However, little is known about the upregulation of genes that leads to this aggressive fibroblast phenotype. To inhibit this progressive growth without interfering with pathways of physiological matrix remodelling, identification of pathways that operate specifically in RA synovial fibroblasts is required. In order to achieve this goal, identification of genes showing upregulation restricted to RA synovial fibroblasts is essential. To identify specifically expressed genes using RNA arbitrarily primed (RAP)-polymerase chain reaction (PCR) for differential display in patients with RA. RNA was extracted from cultured synovial fibroblasts from 10 patients with RA, four patients with osteoarthritis (OA), and one patient with psoriatic arthritis. RAP-PCR was performed using different arbitrary primers for first-strand and second-strand synthesis. First-strand and second-strand synthesis were performed using arbitrary primers: US6 (5'-GTGGTGACAG-3') for first strand, and Nuclear 1+ (5'ACGAAGAAGAG-3'), OPN28 (5'GCACCAGGGGG-3'), Kinase A2+(5'-GGTGCCTTTGG-3') and OPN24 (5'AGGGGCACCA-3') for second strand synthesis. PCR reactions were loaded onto 8 mol/l urea/6% polyacrylamide-sequencing gels and electrophoressed. Gel slices carrying the target fragment were then excised with a razor blade, eluated and reamplified. After verifying their correct size and purity on 4% agarose gels, the reamplified products derived from the single-strand confirmation polymorphism gel were cloned, and five clones per transcript were sequenced. Thereafter, a genbank analysis was performed. Quantitative reverse transcription PCRj of the segments was performed using the PCR MIMIC technique. In-situ expression of centromere kinesin-like protein-E (CENP-E) messenger (m)RNA in RA synovium was assessed using digoxigenin-labelled riboprobes, and CENP-E protein expression in fibroblasts and synovium was performed by immunogold-silver immunohistochemistry and cytochemistry. Functional analysis of CENP-
ISSN:1465-9905
1478-6362
1478-6354
1478-6362
1465-9913
DOI:10.1186/ar13