Improved method to measure urinary alkoxyacetic acids
OBJECTIVES: To simplify the current preparation of samples, and to improve the specificity and reliability of the conventional analytical methods to measure urinary alkoxyacetic acids. METHODS: Samples containing alkoxyacetic acids including methoxy, ethoxy, and butoxyacetic acids (MAA, EAA, and BAA...
Gespeichert in:
Veröffentlicht in: | Occupational and environmental medicine (London, England) England), 1999-07, Vol.56 (7), p.460-467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVES: To simplify the current preparation of samples, and to improve the specificity and reliability of the conventional analytical methods to measure urinary alkoxyacetic acids. METHODS: Samples containing alkoxyacetic acids including methoxy, ethoxy, and butoxyacetic acids (MAA, EAA, and BAA) were acidified with HCl and extracted with a mixed solvent of methylene chloride and isopropyl alcohol, then analysed by gas chromatography/mass spectrometry (GC/MS). RESULTS: Optimal results were obtained when pH was 1.05-1.45, the ratio of methylene chloride and isopropyl alcohol was 2:1, and when extraction time was 10 minutes. Over the concentration range 0.3-200 micrograms/ml, MAA, EAA, and BAA could be determined with a pooled coefficient of variation (nine concentrations, six replicate samples) of 5.55%, 6.37%, and 6.41%, respectively. Urine samples were stable for at least 5 months and 3 freeze-thaw cycles at -20 degrees C. The limits of detection of MAA, EAA, and BAA were 0.055, 0.183, and 0.009 microgram/ml, respectively. The matrix effect of urine samples was negligible for MAA and EAA, but were marginally significant for BAA. The average recoveries of alkoxyacetic acids were 99%-101%. In urine samples MAA from 15 exposed workers showed a strong linear correlation (r = 0.999, slope = 1.01) between the new GC/MS method and Sakai's GC method. CONCLUSIONS: The simplified non-derivatisation pretreatment of samples coupled with GC/MS can provide a specific, sensitive, simple, safe, and reliable method for the biological monitoring of occupational exposure of ethylene glycol ethers. |
---|---|
ISSN: | 1351-0711 1470-7926 |
DOI: | 10.1136/oem.56.7.460 |