Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis

OBJECTIVES To investigate age related and site specific variations in turnover and chemistry of the collagen network in healthy tendons as well as the role of collagen remodelling in the degeneration of the supraspinatus tendon (ST-D) in rotator cuff tendinitis. METHODS Collagen content and the amou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the rheumatic diseases 1999-01, Vol.58 (1), p.35-41
Hauptverfasser: Bank, Ruud A, TeKoppele, Johan M, Oostingh, Geja, Hazleman, Brian L, Riley, Graham P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVES To investigate age related and site specific variations in turnover and chemistry of the collagen network in healthy tendons as well as the role of collagen remodelling in the degeneration of the supraspinatus tendon (ST-D) in rotator cuff tendinitis. METHODS Collagen content and the amount of hydroxylysine (Hyl), hydroxylysylpyridinoline (HP), lysylpyridinoline (LP), and the degree of non-enzymatic glycation (pentosidine) were investigated in ST-D and in normal human supraspinatus (ST-N) and biceps brachii tendons (BT-N) by high-performance liquid chromatography. RESULTS In BT-N, tendons that served as control tissue as it shows rarely matrix abnormalities, pentosidine levels rise linearly with age (20–90 years), indicating little tissue remodelling (resulting in an undisturbed accumulation of pentosidine). A similar accumulation was observed in ST-N up to 50 years. At older ages, little pentosidine accumulation was observed and pentosidine levels showed large interindividual variability. This was interpreted as remodelling of collagen in normal ST after age 50 years because of microruptures (thus diluting old collagen with newly synthesised collagen). All degenerate ST samples showed decreased pentosidine levels compared with age matched controls, indicating extensive remodelling in an attempt to repair the tendon defect. Collagen content and the amount of Hyl, HP, and LP of ST-N and BT-N did not change with age. With the exception of collagen content, which did not differ, all parameters were significantly (p
ISSN:0003-4967
1468-2060
DOI:10.1136/ard.58.1.35