Inhibition of MMP-9 expression by PPARγ activators in human bronchial epithelial cells
Background: The release of matrix degrading enzymes such as matrix metalloproteinase 9 (MMP-9) from bronchial epithelial cells is critically involved in airway wall remodelling in chronic inflammatory processes of the respiratory system. MMP-9 expression is induced by inflammatory mediators such as...
Gespeichert in:
Veröffentlicht in: | Thorax 2003-09, Vol.58 (9), p.778-783 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: The release of matrix degrading enzymes such as matrix metalloproteinase 9 (MMP-9) from bronchial epithelial cells is critically involved in airway wall remodelling in chronic inflammatory processes of the respiratory system. MMP-9 expression is induced by inflammatory mediators such as tumour necrosis factor (TNF)-α, but to date nothing is known about the mechanisms of inhibition of MMP-9 expression in these cells. Methods: A study was undertaken to examine whether activators of the nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARγ) might modulate MMP-9 expression in two different bronchial epithelial cell lines. Results: PPARγ was expressed and was functionally active in NL20 and BEAS cells. Activation of PPARγ by rosiglitazone or pioglitazone significantly reduced TNF-α and PMA induced MMP-9 gelatinolytic activity in a concentration dependent manner in both cell lines, but did not alter the expression of tissue inhibitor of MMPs type 1 (TIMP-1), the local inhibitor of MMP-9. Northern blot analysis revealed a decrease in MMP-9 mRNA expression following treatment with PPARγ which resulted from the inhibition of NF-κB activation in these cells, as determined by transient transfection assays and electromobility shift assays. Conclusion: Activation of PPARγ in human bronchial epithelial cells limits the expression of matrix degrading MMP-9. This might have therapeutic applications in chronic inflammatory processes of the respiratory system. |
---|---|
ISSN: | 0040-6376 1468-3296 |
DOI: | 10.1136/thorax.58.9.778 |