Tourette’s syndrome: a cross sectional study to examine the PANDAS hypothesis

Background: The classical neurological disorder after group A β haemolytic streptococcal infection is Sydenham’s chorea. Recently a tic disorder occurring after group A streptococcal infection has been described and termed PANDAS (paediatric autoimmune neuropsychiatric disorders associated with stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurology, neurosurgery and psychiatry neurosurgery and psychiatry, 2003-05, Vol.74 (5), p.602-607
Hauptverfasser: Church, A J, Dale, R C, Lees, A J, Giovannoni, G, Robertson, M M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The classical neurological disorder after group A β haemolytic streptococcal infection is Sydenham’s chorea. Recently a tic disorder occurring after group A streptococcal infection has been described and termed PANDAS (paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection). It is proposed that antibodies induced after group A streptococcal infection react with basal ganglia neurones in Sydenham’s chorea and PANDAS. Anti-basal ganglia antibodies (ABGA) are present in most cases of acute Sydenham’s chorea, but rarely in controls. Objective: To investigate the hypothesis that Tourette’s syndrome may be associated with group A streptococcal infection and ABGA. Methods: 100 patients with Tourette’s syndrome (DSM-IV-TR) were enrolled in a cross sectional study. Children with neurological disease (n = 50) and recent uncomplicated streptococcal infection (n = 40), adults with neurological disease (n = 50), and healthy adults (n = 50) were studied as controls. Recent group A streptococcal infection was defined using antistreptolysin O titre (ASOT). ABGA were detected using western immunoblotting and indirect immunofluorescence. Results: ASOT was raised in 64% of children with Tourette’s syndrome compared with 15% of paediatric neurological disease controls (p < 0.0001), and in 68% of adults with Tourette’s syndrome compared with 12% of adult neurological controls and 8% of adult healthy controls (p < 0.05). Western immunoblotting showed positive binding in 20% of children and 27% of adults with Tourette’s syndrome, compared with 2–4% of control groups (p < 0.05). The most common basal ganglia binding was to a 60 kDa antigen, similar to the proposed antigen in Sydenham’s chorea. Indirect immunofluorescence revealed autoantibody binding to basal ganglia neurones. Serological evidence of recent group A streptococcal infection, assessed by a raised ASOT, was detected in 91% (21/23) of Tourette’s syndrome patients with positive ABGA compared with 57% (44/77) with negative ABGA (p < 0.01). Conclusions: The results support a role of group A streptococcal infection and basal ganglia autoimmunity in a subgroup of patients with Tourette’s syndrome and suggest a pathogenic similarity between Sydenham’s chorea and some patients with Tourette’s syndrome.
ISSN:0022-3050
1468-330X
DOI:10.1136/jnnp.74.5.602