The Arabidopsis Cupin Domain Protein AtPirin1 Interacts with the G Protein α-Subunit GPA1 and Regulates Seed Germination and Early Seedling Development
Heterotrimeric G proteins are implicated in diverse signaling processes in plants, but the molecular mechanisms of their function are largely unknown. Finding G protein effectors and regulatory proteins can help in understanding the roles of these signal transduction proteins in plants. A yeast two-...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2003-07, Vol.15 (7), p.1578-1590 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterotrimeric G proteins are implicated in diverse signaling processes in plants, but the molecular mechanisms of their function are largely unknown. Finding G protein effectors and regulatory proteins can help in understanding the roles of these signal transduction proteins in plants. A yeast two-hybrid screen was performed to search for proteins that interact with Arabidopsis G protein α-subunit (GPA1). One of the identified GPA1-interacting proteins is the cupin-domain protein AtPirin1. Pirin is a recently defined protein found because of its ability to interact with a CCAAT box binding transcription factor. The GPA1-AtPirin1 interaction was confirmed in an in vitro binding assay. We characterized two atpirin1 T-DNA insertional mutants and established that they display a set of phenotypes similar to those of gpa1 mutants, including reduced germination levels in the absence of stratification and an abscisic acid-imposed delay in germination and early seedling development. These data indicate that AtPirin1 likely functions immediately downstream of GPA1 in regulating seed germination and early seedling development. |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.011890 |