Corepressor/coactivator paradox: potential constitutive coactivation by corepressor splice variants

The functional consequences of the interaction of transcriptional coregulators with the human thyroid hormone receptor (TR) in mammalian cells are complex. We have used the yeast, Saccharomyces cerevisiae, which lack endogenous nuclear receptors (NRs) and NR coregulators, as a model to decipher mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear receptor signaling 2006-10, Vol.4 (1), p.e022
Hauptverfasser: Meng, Xianwang, Arulsundaram, Vishnuka D, Yousef, Ahmed F, Webb, Paul, Baxter, John D, Mymryk, Joe S, Walfish, Paul G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The functional consequences of the interaction of transcriptional coregulators with the human thyroid hormone receptor (TR) in mammalian cells are complex. We have used the yeast, Saccharomyces cerevisiae, which lack endogenous nuclear receptors (NRs) and NR coregulators, as a model to decipher mechanisms regulating transcriptional activation by TR. In effect, this system allows the reconstitution of TR mediated transcription complexes by the expression of specific combinations of mammalian proteins in yeast. In this yeast system, human adenovirus 5 early region 1A (E1A), a natural N-CoR splice variant (N-CoR(I)) or an artificial N-CoR truncation (N-CoR(C)) coactivate unliganded TRs and these effects are inhibited by thyroid hormone (TH). E1A contains a short peptide sequence that resembles known corepressor-NR interaction motifs (CoRNR box motif, CBM), and this motif is required for TR binding and coactivation. N-CoR(I) and N-CoR(C) contain three CBMs, but only the C-terminal CBM1 is critical for coactivation. These observations in a yeast model system suggest that E1A and N-CoR(I) are naturally occurring TR coactivators that bind in the typical corepressor mode. These findings also raise the possibility that alternative splicing events which form corepressor proteins containing only C-terminal CBM motifs could represent a novel mechanism in mammalian cells for regulating constitutive transcriptional activation by TRs.
ISSN:1550-7629
1550-7629
DOI:10.1621/nrs.04022