Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization: A Process Mediated by Hypoxia and Endothelin-1

The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2006-06, Vol.168 (6), p.1793-1807
Hauptverfasser: Davie, Neil J, Gerasimovskaya, Evgenia V, Hofmeister, Stephen E, Richman, Aaron P, Jones, Peter L, Reeves, John T, Stenmark, Kurt R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia.
ISSN:0002-9440
1525-2191
DOI:10.2353/ajpath.2006.050754