Overexpression of Monocyte Chemotactic Protein-1/CCL2 in β-Amyloid Precursor Protein Transgenic Mice Show Accelerated Diffuse β-Amyloid Deposition

Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-β peptide (Aβ) deposition remains poorly understood. To address this question, we developed a novel bigenic mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2005-05, Vol.166 (5), p.1475-1485
Hauptverfasser: Yamamoto, Masaru, Horiba, Masahide, Buescher, James L., Huang, DeReng, Gendelman, Howard E., Ransohoff, Richard M., Ikezu, Tsuneya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-β peptide (Aβ) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Aβ deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Aβ-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Aβ (an indicator of fibrillar Aβ) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Aβ deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Aβ deposition by reducing Aβ clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer's disease and positively affect disease outcomes.
ISSN:0002-9440
1525-2191
DOI:10.1016/S0002-9440(10)62364-4