Electron transport regulates cellular differentiation in the filamentous cyanobacterium Calothrix
Differentiation of the filamentous cyanobacteria Calothrix sp strains PCC 7601 and PCC 7504 is regulated by light spectral quality. Vegetative filaments differentiate motile, gas-vacuolated hormogonia after transfer to fresh medium and incubation under red light. Hormogonia are transient and give ri...
Gespeichert in:
Veröffentlicht in: | The Plant cell 1993-04, Vol.5 (4), p.451-463 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differentiation of the filamentous cyanobacteria Calothrix sp strains PCC 7601 and PCC 7504 is regulated by light spectral quality. Vegetative filaments differentiate motile, gas-vacuolated hormogonia after transfer to fresh medium and incubation under red light. Hormogonia are transient and give rise to vegetative filaments, or to heterocystous filaments if fixed nitrogen is lacking. If incubated under green light after transfer to fresh medium, vegetative filaments do not differentiate hormogonia but may produce heterocysts directly, even in the presence of combined nitrogen. We used inhibitors of thylakoid electron transport (3-[3,4-dichlorophenyl]-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) to show that the opposing effects of red and green light on cell differentiation arise through differential excitations of photosystems I and II. Red light excitation of photosystem I oxidizes the plastoquinone pool, stimulating differentiation of hormogonia and inhibiting heterocyst differentiation. Conversely, net reduction of plastoquinone by green light excitation of photosystem II inhibits differentiation of hormogonia and stimulates heterocyst differentiation. This photoperception mechanism is distinct from the light regulation of complementary chromatic adaptation of phycobilisome constituents. Although complementary chromatic adaptation operates independently of the photocontrol of cellular differentiation, these two regulatory processes are linked, because the general expression of phycobiliprotein genes is transiently repressed during hormogonium differentiation. In addition, absorbance by phycobilisomes largely determines the light wavelengths that excite photosystem II, and thus the wavelengths that can imbalance electron transport. |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.5.4.451 |