Functional Architecture of the Light-Responsive Chalcone Synthase Promoter from Parsley
We have combined in vivo genomic footprinting and light-induced transient expression of chalcone synthase promoter derivatives in parsley protoplasts to identify cis sequences regulating light activation. The parsley chalcone synthase promoter contains two cis "units" that are light-respon...
Gespeichert in:
Veröffentlicht in: | The Plant cell 1989-07, Vol.1 (7), p.707-714 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have combined in vivo genomic footprinting and light-induced transient expression of chalcone synthase promoter derivatives in parsley protoplasts to identify cis sequences regulating light activation. The parsley chalcone synthase promoter contains two cis "units" that are light-responsive. Each unit is composed of short DNA stretches of approximately 50 base pairs, and each contains two in vivo footprints. One of the footprints in each unit covers a sequence that is highly conserved among other light- and stress-regulated plant genes. The other footprinted sequences in each unit are not related to each other. The TATA distal light-responsive unit is inherently weak but can compensate partially for the loss of the stronger TATA proximal unit. Levels of light-induced expression from either can be influenced by the presence of a region of approximately 100 base pairs located upstream of the TATA distal light-responsive unit. Combination of the light-responsive units and upstream region generates a synergistic response to light. We speculate that functional compensation generated by nonidentical, but sequence-related, cis units foreshadows combinatorial diversity of cognate trans factors. |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.1.7.707 |